
For Releases V2R2 and later (patent pending)

Copyright © 2009 Duke Software LLC
Revision date: 05-27-2014

Duke Software www.duke-software.com

High Definition Profiling

Installation Guide

PREFACE
PROPRIETARY LEGEND

z/XPF and its documentation (collectively, “Product”), including copies thereof, are the confidential
and proprietary property of Duke Software LLC (“Owner”). Product may be used only by those
organizations that are licensed by Owner for such use and only in the manner so licensed. The
program and documentation may not be published, reproduced, distributed, or made available to third
parties for any purpose without the expressed written permission of Owner; however, a reasonable
number of copies may be made of the documentation (including the copyright notices and proprietary
legends thereon) as is necessary for the legitimate use of Product within a licensed organization.

Except as may be otherwise expressed in a signed agreement between Owner and Customer,
Owner makes no representations or warranties, expressed or implied, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose, the warranty of freedom
from rightful claims by way of infringement and the like, and any warranty as to accuracy.

Contact Information
Phone 281-395-5570
E-Mail: David.Day@duke-software.com

Please visit www.duke-software.com for the following services:

• General information about z/XPF
• E-mail links to Marketing and Customer service
• FTP links for uploading diagnostic information to Technical Support

ii | z/XPF Installation Guide

Table of Contents
Welcome to the z/XPF Installation Guide . 1

System Requirements . 3

TSO/ISPF considerations . 4

Contents of the Installation package. 5

Copying z/XPF files to the mainframe . 5

NON-SMP/E installation . 7

SMP/E installation. 9

After installation (SMP/E or not) you still have to:. 10

z/XPF and DB2 . 11

z/XPF and Installation Security . 12

z/XPF’s use of SMF Exits IEFUSI and IEFACTRT . 14

Short running jobs cannot be profiled with z/XPF . 15

zXPF and prior version compatibility . 15

z/XPF and virtual storage . 16

Setting the default service class designation for z/XPF . 16

z/XPF’s Started Task Name . 17

z/XPF Server logs its actions in ZXPFLOG: . 17

z/XPF and LPA mapping functions . 17

z/XPF and Operator commands . 17

Format of the SLIP commands that z/XPF may issue . 18

Finishing the z/XPF installation. 19

Input statements for z/XPF’s started task . 20

z/XPF control statements explained . 20

LC=xxxx-xxxx-xxxx-xxxx . 20

ALOCVOL=xxxxxx . 21

ALOCUNIT=xxxxxxxx . 21

DATA_CAPTURE_DSN_HLQ=xxxxxxxx . 21

DATA_CAPTURE_DS_BUFFERS=nnn . 21

DB2=XXXX,SDSNLOAD=YYYYY.ZZZZZZZ . 22

FORCE_VENDOR_TABLE=YES . 22

INTERVAL_TOLERANCE_PERCENTAGE=nn . 23

 Duke Software | iii

iv | z/XPF Installation Guide

MAP_LMOD_DURING_CAPTURE=YES/NO . 23

MAPLPA=NO . 24

MAP_LPAMOD=xxxxxxxx,DSN=yyyyy . 24

MAX_MSG_DURING_CAPTURE=1000/NNNNNN . 24

NBR_COPYCYCLES_PER_SECOND=50/nnn . 24

PR_BUFFERS=nnn . 25

PR_BUFFERS=ASIS . 25

RACF_PROFILE=”hlq” . 25

RESET_SRVCLASS=XXXXXX . 26

RESTARTDSN=dsname . 26

SLIP_COMMANDS=YES/NO . 26

SLIP_ID=xxxx . 27

SSNAME=ZXPF/xxxx . 27

SSCLEAR=YES/NO . 27

USER_TRACE_NBR=0-F . 27

WRITE_TO_LOGREC=YES . 28

Installation verification/trouble-shooting . 28

Here’s a handy usage note: . 29

Welcome to the z/XPF Installation Guide
Thank you for your decision to install and use z/XPF. The installation process has been
designed to be easy, and straightforward. However, if you should need our help, please
contact :

David Day: 281-395-5570 - David.Day@duke-software.com

STOP. Please read this.

Everyone is busy, with a huge task list. We’re all in a hurry to get to the next job. However, z/
XPF is SO different from other profilers that we urge you NOT TO SKIP STEPS when install-
ing it. For example, z/XPF’s abilities to measure DB2 applications will not work if you haven’t
installed that portion of the product.

The installation itself is straightforward enough. Please follow all the steps.

z/XPF runs at a very low level in the z/OS environment. z/XPF reads Trace Records which
are generated by the inter-action of every program executing on a z/OS image with the op-
erating system. There can be millions of trace records generated for any application, which
means that:

• z/XPF has to execute at high enough priority to examine Trace Records before the
Trace Table wraps. The factory default logic will issue an operator command to set the
server address space to the SYSSTC WLM workload class. In some environments
where there are many address spaces already assigned to this class, this may not
be enough priority to insure that z/XPF gets control often enough to keep abreast of
the activity occurring in the LPAR. The factory default logic will also set the number
of processor trace buffers to 512 from the z/OS default of 256. If/when the ZXPFLOG
contains messages indicating a loss of time, or gap, in the copying of trace records,
consider setting the number of processor trace buffers higher than 512. This can be
accomplished via an operator command, or using a control statement in the z/XPF
start-up control dataset.

• z/XPF profiles job steps, not entire jobs.

• If the target application you are profiling is extremely active, and you set z/XPF to run

the entire span of the jobstep, then you WILL consume a fair amount of available DASD
space for the VSAM capture dataset. It is impossible to predict the number of cylinders
needed to contain the complete data capture. It is driven by the activity of the target
application. Consider setting aside a separate pool of available space for capture da-

 Duke Software | 1

mailto:bshimizu@colesoft.com
mailto:dday@colesoft.com

2 | z/XPF Installation Guide

tasets if DASD is at a premium in your installation.

• You have to wait for the data capture to terminate to be able to produce statistics. The
environmental data that allows z/XPF to make ‘sense’ of the trace data is written to the
end of the dataset at data capture termination.

So, while other profilers are like field glasses, z/XPF is more like an electron microscope:
very useful in taking VERY granular measurements at an extremely low level. That’s why the
‘factory default’ setting for any data capture session is 500K records. We think that’s enough
data for you to make an informed judgment.

We’re convinced that there’s nothing more useful than z/XPF for getting definitive informa-
tion on resource consumption at the instruction level, but you have to set up and use the tool
properly. A hammer makes a poor screwdriver.

We’ll gladly help you, so call us whenever you have a question. OK, let’s move on.

 Duke Software | 3

What is z/XPF?
z/XPF is a utility program that can capture, and tabulate performance data on running
programs. It can easily identify how a program uses (or abuses) system resources, and can
help programmers streamline their code for maximum efficiency.

z/XPF’s basic architecture is unique (patent pending). Instead of “freezing” the target address
space in order to gather information, z/XPF “wakes up” periodically (50 times per second)
and reads information directly from the system trace table.

The system trace table is a set of buffers created for each processor. Records are written for
many events in the system including SVCs, start subchannel, interrupt processing and many
other significant events during application processing. Trace buffers are filled quickly and
when they are filled, the trace buffers will over-write at the beginning, which overlays earlier
trace records. This is called “wrapping”. If trace buffers wrap before z/XPF can gather the
records, they will be lost.

Because z/XPF reads trace records out of the trace buffers, it is far more effective at capturing
events than other such products. HOWEVER, z/XPF depends on two very important principles
in order to do its job:

1. z/XPF MUST execute at a very high priority. (or it won’t be dispatched often enough
to collect its data).

2. The system’s processor trace table(s) must be large enough to minimize “wrapping”
before z/XPF can gather trace records.

System Requirements
z/XPF V2R2 will execute on z/OS Release 1.10 and above.

Duke Software sends z/XPF activation codes with the product. If, for some reason you don’t
have these codes, please contactDuke Software either by phone or email for a valid license
code.

This is important enough to expand upon: z/XPF needs to execute at the same level of
priority as z/OS system tasks (often Service Class SYSSTC). Otherwise, z/XPF will not be
dispatched often enough to collect the trace records that the user requires. Therefore, during
initialization, the z/XPF server task will execute an Operator command to reset its service
class to SYSSTC. Certain portions of z/XPF’s data capture process also operate as a Global
SRB. Finally, z/XPF will issue the TRACE ST command to increase the size of the system
trace table. These commands are detailed below in “z/XPF and Operator Commands”

There are two situations in which z/XPF’s Operator command may not get the desired results:

4 | z/XPF Installation Guide

1) If your installation blocks program-issued Operator commands, and
2) if your installation has changed its service class definitions in such a way that SYSSTC
 is not a priority class.

You may need to consult with your installation’s personnel to resolve this potential conflict.
Otherwise, z/XPF may not be able to do its job for you.

TSO/ISPF considerations
While future releases of z/XPF will give users the option of executing z/XPF’s reporting in batch,
the current release does its reporting entirely under TSO. Therefore some considerations
must be made.

Assigning priority to TSO regions

z/XPF’s report processing is broken into two phases:

Phase 1 distributes the events into the proper reporting accumulators.
Phase 2 creates the reports by processing the accumulators.

z/XPF is capable of capturing a surprising amount of raw data – even millions of events!
Therefore, two factors influence the elapsed time it takes z/XPF to create its reports:

1) The number of events in the source capture dataset, and
2) z/XPF’s access to the processor.

Most z/OS installations treat long-running TSO transactions somewhat poorly and will
relegate them to the bottom of the CPU “food chain”. They only get access to the processor
when everything else in the system is satisfied. Therefore, the installation may wish to give
these TSO sessions greater priority, or allow the creation of additional TSO userids for use
in running z/XPF reports.

To illustrate this point, a customer recently sent us a data capture dataset containing just
under 5,500,000 events. On his system, a 2096, it took almost a full hour to get through
Phase 1. On our system, a 2097, it took just under 3 minutes. The customer was running on
a heavily loaded system, while our own test environment is far less busy.

z/XPF and virtual storage

z/XPF trades virtual storage usage for speed. It is impossible to predict the amount of virtual
storage that z/XPF will need to create reports because the amount of virtual storage required
is dictated by the size of the dataset created during data capture.

With z/XPF V2R1 and above, both the z/XPF Server and the Report Generation functions
use virtual storage obtained above the 2-gigabyte “bar”. Therefore:

 Duke Software | 5

•	 You MUST have enough space made available to your user’s TSO userids to process
the reports. If your users get storage ABENDs during the report phase in z/XPF, that’s an
indicator that they need more space.

•	 ISPF must be able to allocate storage above the bar. Just how much storage needed above
the bar depends on the number of Work Units and load modules that are reported on during
z/XPF’s data capture.

• it is recommended that the installing Systems Programmer set the MEMLIMIT value
in the SMFPRMxx member to NOLIMIT.

z/XPF also expects to write to its ISPF log dataset. If no log dataset is allocated, then
z/XPF will not be able to log ISPF error messages, and diagnosis of z/XPF problems within
ISPF will be far more difficult.

Contents of the Installation package
z/XPF’s installation files are made available via e-mail transmission from Duke Software.
They can also be downloaded from the Duke Software's website. In either case, these files
are compressed using WINZIP. However, in order to get the compressed file past certain
e-mail filters on the customer’s side, we rename the file extension from, “.zip” to, “.zxpf”.
Please rename the file extension back to, “.zip” and the decompression should proceed
normally.
You will receive six files. They are:

1. README.txt
2. zxpf.VnRnMn.dmmddyy.initial1.txt
3. zxpf.VnRnMn.dmmddyy.initial2.txt
4. zxpf.VnRnMn.dmmddyy.initial3.txt
5. zxpf.VnRnMn.dmmddyy.initial4.txt
6. zxpf.VnRnMn.dmmddyy.xmit (one XMIT file)

The system files come named with multiple level qualifiers. The highest level qualifier
is“zxpf”, the next is a version-release-modification value, the next is a “date”, the next qualifier
identifies the type of the file.

Please review the accompanying README.txt file. It contains instructions on file allocations
for the various install files.

Copying z/XPF files to the mainframe
Before starting this copy process, the installer must decide what high-level qualifier(s) will be
used for all of the z/XPF datasets used during the install process on the z/OS system.

Consider using a two-level qualifier for z/XPF installations. The first qualifier would be “ZXPF”
followed by a date in the format “DMMDDYY”. If this approach is taken, then all datasets
associated with a given version of z/XPF on your system will be easily identifiable.

6 | z/XPF Installation Guide

Allocate four 1-track sequential datasets on the z/OS image. These datasets are JCL files
you will tailor and submit to populate the z/XPF datasets necessary for the install process.
z/XPF refers to these datasets as the INITIAL datasets.

zxpf.v2r2.initial1.txt is a skeleton JCL file. This job allocates all of the datasets used in
the install process. You will run this job first.

zxpf.v2r2.initial2.txt is a job that will execute a TSO Receive to populate one z/XPF
library. This library contains one member for each z/XPF library. This library is in TSO
Transmit format. You will run this job second, after you have uploaded the XMIT file.

zxpf.v2r2.initial3.txt is another skeleton JCL file. This job copies each member of the
XMIT library to individual XMIT datasets.

zxpf.v2r2.initial4.txt contains the JCL to execute a TSO Receive against the individual
XMIT datasets created by the initial3 job. This job populates the z/XPF libraries that
may be used as run-time libraries, or may be input to an SMP/E install of z/XPF.

 Upload zxpf.VnRnMn.dmmddyy.INITIAL1.TXT to &HLQ.INITIAL1
 Upload zxpf.VnRnMn.dmmddyy.INITIAL2.TXT to &HLQ.INITIAL2
 Upload zxpf.VnRnMn.dmmddyy.INITIAL3.TXT to &HLQ.INITIAL3
 Upload zxpf.VnRnMn.dmmddyy.INITIAL4.TXT to &HLQ.INITIAL4

The JCL contained in the &HLQ.INITIAL1 dataset will allocate all of the datasets needed
for a non-SMPE install. Proceed to the z/OS platform, tailor the JCL to conform to your
shop’s standards, and run the INITIAL1 job.

NOTE: The PC file uploaded in step 2 was created on z/OS using TSO Transmit. It was then
transferred to a PC using FTP in binary mode. This dataset, referred to as &HLQ.XMIT, will
be used as input to the TSO Receive function. This datasest must be allocated as physical
sequential, with an LRECL of 80, and a BLKSIZE of 3120. It must be uploaded in binary
format.

After that job has been successfully executed, return to the PC to upload the binary file
(which has a low-level qualifier of “xmit”). Upload zxpf.v2r2m’n’.Dmmddyy.XMIT to &HLQ.
XMIT.

The directions above appear also in the README.TXT file that we send with the z/XPF
distribution materials. HOWEVER, it’s still a good idea to have a look at the README.TXT
file as volatile changes will be documented there first.

 Duke Software | 7

NON-SMP/E installation

z/XPF may be installed without the services of SMP/E. Here are some instructions on how
to do that. After these steps have been completed, please refer to “z/XPF and Installation
Security” and follow the steps from that point.

Here is a summary of the steps you’ll need to complete for a non-SMP/E installation. They
are covered in greater detail below.

1) Get the load modules into the proper libraries.
2) Get the JCL member used to start the z/XPF task into a proclib. Modify DSN’s within
 this member.
3) Get the clist used to invoke the z/XPF ISPF interface into a clist library. Modify DSN’s
 within this member.
4) Copy the ISPF panel, messages and table libraries.

That was the summary. Now for the details:

1) Get the load modules into the proper libraries.

If you choose to run the product from the &HLQ.INSTALL.LOAD library, then you will need
to authorize this library. The &HLQ.INSTALL.LOAD data set should now contain the load
modules needed to execute z/XPF. Within this PDS, you will find modules:

• APBEGN
• APDSNMDS (Does not need to be in an authorized library.)
• APD2STMT (Does not need to be in an authorized library.)
• APGETSQL
• APISPF (Does not need to be in an authorized library.)
• APLOGT
• APMAPP
• APMERGE
• APMRGECT
• APMVTTE
• APNTVCT
• APPBUFCP
• APPBUFCT
• APRESMGR
• APTBUFCP
• APTBUFCT
• APVSAM
• MERGCHNS
• PBUFCOPY
• TBFZOS10

The z/XPF server task must run authorized. If the decision is made to use the &HLQ.INSTALL.

8 | z/XPF Installation Guide

LOAD library as the steplib when executing the started task, then you must authorize this
library. If not, copy all the members on the previous page except APDSNMDS, APD2STMT
and APISPF to an authorized library.

Members APISPF, APDSNMDS, and APD2STMT are the load modules used for the z/
XPF ISPF interface. Either leave the members here in this library, or copy them to a load
library that can be used by TSO/ISPF applications within your environment. The module
COMPRES2 is a Program Object. Either leave COMPRES2 in the install library or copy it to
a non-authorized PDSE.

2) Get the started task JCL into a proclib.

Within &HLQ.INSTALL.JCL is the skeleton JCL member needed to execute the z/XPF started
task, ZXPFCPTR. Below is a copy of the jcl contained within this member.

//*
//ZXPFCPTR EXEC PGM=APBEGN,REGION=0M
//*
//STEPLIB DD DSN=&HLQ.APFLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//INPUT DD DSN=&HLQ.CNTL(INPUTDS),DISP=SHR
//ZXPFLOG DD SYSOUT=*
//SYSABEND DD SYSOUT=A

Copy the member to a proclib dataset as appropriate to your environment. Modify the dataset
name on the STEPLIB DD statement to conform to the library you will be using to execute
the z/XPF started task. Modify the dataset name on the INPUT DD statement to the library
you will use for the input control statement(s) that the started task uses during initialization.

3) Get the clist moved to a clist library, and edit the clist.

The 2nd member of &HLQ.INSTALL.JCL you will need to move is ZXPFCLST. This is the
CLIST used to allocate the z/XPF libraries, and invoke the ISPF interface. Below is a copy
of the first few lines of code within the clist. You must modify these lines within the clist to
specify the correct libraries. It is a good idea to shorten the name of the clist at this time from
ZXPFCLST to ZXPF.

PROC 0 DEBUG LIST PRM(‘ZXPF’) +
 LLIB(‘’’&HLQ.APFLOAD’’ +
 ‘’&HLQ.APFLOADZ’’’) +
 MLIB(‘’’&HLQ.ISPMLIB’’’) +
 PLIB(‘’’&HLQ.ISPPLIB’’’) +
 TLIB(‘’’&HLQ.ISPTLIB’’’)

&HLQ.APFLOAD should be set to the load library that contains modules APISPF, APDSNMDS,

 Duke Software | 9

and APD2STMT. If you intend to run z/XPF from the install libraries, this would be set to
&HLQ.INSTALL.LOAD, where the “&HLQ” value is set to the value you chose for this install.

&HLQ.APFLOADZ should be set to the load library that contains module COMPRES2. If you
intend to run z/XPF from the install libraries, this would be set to &HLQ.INSTALL.ZLIB.LOAD,
where the “&HLQ” value is set to the value you chose for this install.

&HLQ.ISPMLIB and &HLQ.ISPPLIB should be changed to the appropriate library names.
See below.

Note that if the system name is changed from the default of ZXPF, the parm passed to the
clist to at startup will need to be changed.

4) Copy the ISPF panel, messages and table libraries.

If you choose to run from the &HLQ.INSTALL.ISPPLIB, ISPMLIB and ISPTLIB libraries then
this step is optional - you don’t have to copy anything. The ISPF panels needed are in
dataset &HLQ.INSTALL.ISPPLIB and the messages are in &HLQ.INSTALL.ISPMLIB. &HLQ.
ISPTLIB contains an ISPF commands table that allows the ISPF command REPEAT FIND
to function when viewing z/XPF reports. You can either execute the ISPF clist using these
libraries, or copy the members to an appropriate library for your environment.

SMP/E installation
If z/XPF is installed using the provided JCL, the &HLQ value used for the install may be the
same value you used when creating the &HLQ.INSTALL and &HLQ.UPLOAD datasets. If
installing into a common ISV SMP environment, you should be sure that the FMID, load module
names, panel names, and messages are unique to z/XPF in that common environment.

At the end of the install, assuming you used a separate SMP CDS for the install, two load
libraries will be created: &HLQ.APFLOAD and &HLQ.APFLOADZ. The panel library will be
&HLQ.ISPPLIB, the messages library will be &HLQ.ISPMLIB and the table library will be
&HLQ.ISPTLIB.

Skip steps 1 through 8 below if you are NOT installing z/XPF via SMP/E. We
recommend you use a separate SMP/E environment for z/XPF.

1) In the install dataset run member DEFCSI to define the global, target, and DLIB CSIs
for z/XPF.

2) In the install dataset run member DEFSMPE to define the SMP/E datasets needed for
processing.

3) In the install dataset run member UPDTZNS to update the SMP/E global, target, and
DLIB zones. We recommend that you use a separate SMP/E environment for z/XPF.

10 | z/XPF Installation Guide

However, you may skip this step if you are installing z/XPF into a common program
products SMP/E environment.

4) In the install dataset run member DEFTLIB to allocate target and distribution libraries
used by SMP/E.

5) In the install dataset run member DDDEFS to add the DD definitions for the target and
distribution libraries you allocated in the previous step.

6) In the install dataset run member RECEIVE to execute the SMP/E receive command
for the z/XPF function.

7) In the install dataset run member APPLY to execute the SMP/E apply command for
the z/XPF function. The apply command populates the target libraries with the z/XPF load
modules, panels, messages, clist, proc, etc.

8) This step is optional. In the install dataset run member ACCEPT to execute the SMP/E
accept command for the z/XPF function.

After installation (SMP/E or not) you still have to:
Here is a summary of the next four steps you’ll need to complete in order to install z/XPF.
They are covered in greater detail below.

1) Get the started task JCL into a procedure library.
2) Get the ZXPFCLST moved to a CLIST library.
3) Copy the ISPF panel, messages and table libraries.
4) Define z/XPF to your DB2 system (see the topic “z/XPF and DB2” below).

That was the summary. Here are the details.

1) Get the started task JCL into a procedure library.

Within &HLQ.INSTALL.JCL is the skeleton JCL member needed to execute the z/XPF started
task, ZXPFCPTR. Below is a copy of the JCL contained within this member.

//*
//ZXPFCPTR EXEC PGM=APBEGN,REGION=0M
//*
//STEPLIB DD DSN=&HLQ.APFLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//INPUT DD DSN=&HLQ.CNTL(INPUTDS),DISP=SHR
//ZXPFLOG DD SYSOUT=*
//SYSABEND DD SYSOUT=A

 Duke Software | 11

Copy the member to a proclib dataset as appropriate to your environment. Modify the dataset
name on the STEPLIB DD statement to conform to the library you will be using to execute the
z/XPF started task. Modify the dataset name on the INPUT DD statement to conform to the
library you will use for the input control statement(s) the started task uses during initialization.
The STEPLIB DD library, &HLQ.APFLOAD, must be an authorized library.

2) Get the ZXPFCLST clist moved to a clist library.

The 2nd member of &HLQ.INSTALL.JCL you will need to move is ZXPFCLST. This is the
clist used to allocate the z/XPF libraries, and invoke the ISPF interface. Below is a copy
of the first few lines of code within the clist. You must modify these lines within the clist to
specify the correct libraries. Probably a good idea to shorten the name of the clist at this time
from ZXPFCLST to ZXPF.

PROC 0 DEBUG LIST PRM(‘ZXPF’) +
 LLIB(‘’’&HLQ.APFLOAD’’ +
 ‘’&HLQ.APFLOADZ’’’) +
 MLIB(‘’’&HLQ.ISPMLIB’’’) +
 PLIB(‘’’&HLQ.ISPPLIB’’’) +
 TLIB(“&HLQ.ISPTLIB”)

&HLQ.APFLOAD should be set to the load library that contains modules APISPF, APDSNMDS,
and APD2STMT. Change the “&HLQ” value to the value you chose for this install of z/XPF.

&HLQ.APFLOADZ should be set to the load library that contains module COMPRES2.
Change the “&HLQ” value to the value you chose for this install of z/XPF.

&HLQ.ISPMLIB, &HLQ.ISPPLIB and &HLQ.ISPTLIB should be changed to the appropriate
library names.

Note that if the system name is changed from the default value of ZXPF, the parm passed to
the clist to at startup will also need to be changed.

3) Copy the ISPF panel, messages and table libraries.

At this point the ISPF panels needed are in dataset &HLQ.ISPPLIB and the messages are
in &HLQ.ISPMLIB. You can either execute the ISPF clist using these libraries, or copy the
members to an appropriate library for your environment.

z/XPF and DB2
If z/XPF is to be used to profile DB2 applications, then z/XPF’s DBRM must be bound to
the target DB2 systems. This DBRM will give z/XPF the ability to gather package and plan

12 | z/XPF Installation Guide

information for SQL.

z/XPF’s DBRM accesses the catalog, and augments SQL performance data with package
bind and dependency statistics that enhance z/XPF’s profile reporting.

To bind z/XPF’s DBRM, modify and run the BINDJOB member of the install library on each
DB2 system where z/XPF will be used. The user executing this job must have BIND ADD
authority within the DB2 system. SYSADM works as well. This step must be done for each
DB2 system that z/XPF will be deployed to profile.

Finally, the userid that the z/XPF server address space uses will have to be given authority to
execute the plan. The easiest way to accomplish this is through SPUFI. Assuming the server
task name is ZXPFCPTR and it defaults to a user id of ZXPFCPTR, the following grant sql
statement will give z/XPF the ability to execute the plan that was bound above.

GRANT EXECUTE ON PLAN APGETSQL TO ZXPFCPTR

This GRANT SQL statement will need to be successfully run on the same DB2 systems
where you bound the plan. The userid that binds the plan will have ownership of the plan and
should be able to grant execute authority. If not, DB2 SYSADM authority will be needed.

z/XPF and Installation Security
During a data capture, z/XPF allocates and writes to a VSAM ESDS dataset. The format
of the dataset name is “&HLQ.ADDRESSSPACE-NAME.DMMDDYY.THHMMSS.PROFL”,
where:

&HLQ can be one of the following three values:

 1) z/XPF’s subsystem name (defaults to “ZXPF”), or
 2) A specific qualifier chosen by the user, and specified in z/XPF’s start-up control
 statements, or
 3) The TSO userid of the individual who defined the data capture request.

Note: Depending upon the choice of a high-level qualifier, the installation may need to define
an alias pointer in the Master Catalog for this high-level qualifier. Failure to do this could
result in capture datasets being catalogued in the system’s Master Catalog.

ADDRESSSPACE-NAME is the name of the batch job, Started Task or TSO session that is
the target of the data capture request.

DMMDDYY is the current date:

 “D” - a constant
 “MM” - the month

 Duke Software | 13

 “DD” - the date of the month
 “YY” - the year

THHMMSS is the time:

 “T” - a constant
 “HH” - the hour
 “MM” - the minute
 “SS” - the second

PROFL - a constant

Whether you intend to have a specific high-level qualifier for all data capture datasets, or
you intend to use the requestor’s TSO userid as a high-level qualifier, the z/XPF server task
needs ALLOCATE authority to create these datasets.

[The first time a dataset is opened for report generation, z/XPF’s mapping process will
create csect maps for all Private Area load modules. These maps are appended to the
data capture dataset when the user frees the dataset. Therefore, all TSO users that wish
to process data capture datasets will need UPDATE authority to them.]

The z/XPF user has the option of utilizing the installation’s security product to control two
functions:

 ● The user’s ability to schedule a data capture session for a target address space, and
 ● The user’s ability to use GTF SLIP processing to add PER event data to the capture

dataset.

NOTE: z/XPF’s ability to use SLIP processing is, by default, off. To ensure that z/XPF users
can add PER data to their data capture dataset, z/XPF must be initialized with slip commands
turned on. You can do that by specifying the following statement in the startup deck:

 SLIP_COMMANDS=YES

z/XPF’s ability to add PER event data to the capture dataset allows the user to collect Branch
TRACE and INSTRUCTION FETCH information. The result is very useful, extremely detailed,
and yields what we call “High Definition Profiling”. However, using the PER feature results
in significant CPU consumption, which the installation can control through the application of
security rules.

z/XPF can use generalized resource rules to control these two functions. During initialization
a RACROUTE request is executed to list rules for “&HLQ.**”. The “&HLQ” value can be a
default of “ZXPF”, or specified in the input control statement “RACF_PROFILE=” (as detailed
below). The RACROUTE request builds a list of profiles in the z/XPF address space that
begin with the “&HLQ” value, if any exist.

14 | z/XPF Installation Guide

When a user adds a data capture request to one of z/XPF’s queues, a RACROUTE
REQUEST=FASTAUTH is executed for rule “&HLQ.ADDRSPAC.&NAME”, where “&HLQ” is
either the default value of “ZXPF” or as specified in the “RACF_PROFILE=” control statement.
“&NAME” is the name of the address space that is the target for the data capture request.

If the return code from the RACROUTE REQUEST authorization check is 0 or 4, the request
is added to the queue. Anything greater than 4 causes the request to be denied. A return
code of 0 indicates that the user has READ authority to the rule. A return code of 4 indicates
that the requested rule is not defined.

After passing the above check, if the data capture request specifies that GTF is to be used
to add PER event data, then another RACROUTE is built and executed. The entity checked
on this request is &HLQ.OPERCMDS.&NAME.

If a data capture request is denied after updating the correct rules, then z/XPF’s copy of
the security rules must be refreshed. The user has two options: Either re-cycle the z/XPF
address space, or enter the operator modify command ‘F &ZXPF,REFRESH PROFILES’
where &ZXPF is the name of the z/XPF server address space.

z/XPF’s use of SMF Exits IEFUSI and IEFACTRT
z/XPF uses the IEFUSI exit to notify the z/XPF server address space that a jobstep has
started and uses IEFACTRT exit to notify the z/XPF server address space that a jobstep
has terminated. Therefore, these two SMF exits should be defined to the system in the
SMFPRMxx member. If these exits are present, then z/XPF will dynamically install exit code
into the list of modules called at these exit points.

z/XPF checks for these exits at both the SYS and SUBSYS level. SYS-level exits take
precedence for the entire system UNLESS SUBSYS-level exits are present, in which case
the SUBSYS exit will take precedence for that subsystem (only).

An example of the SYS-level exit would appear thusly:

SYS(EXITS(IEFUSI,IEFACTRT))

An example of the SUBSYS-level exit for JES2 would appear thusly:

SUBSYS(JES2,EXITS(IEFUSI,IEFACTRT))

So, if a SUBSYS exit exists for JES2/JES3 subsystems, BUT no SYS-level exit is present,
then z/XPF will be able to measure start-of-job/end-of-job for JES2/JES3-submitted jobs only,
and will not be able to measure Started Tasks, or TSO sessions. Thus, it is highly desirable
to define these exits at the SYS level AND at the SUBSYS level for all desired sub-systems
so that z/XPF can use these exits.

To verify the presences of these exits, the user may execute the Operator command: “D

 Duke Software | 15

SMF,O”. This command will display the status of SMF on the local installation. These two
statements must be present:

SYS(EXITS(IEFUSI)) -- PARMLIB
SYS(EXITS(IEFACTRT)) -- PARMLIB

If either of these two statements are not present in the display, z/XPF will initialize, but will
generate messages upon each startup to remind the user that these exits are not available to
z/XPF. In this case, z/XPF will not be able to measure start-of-job/end-of-job events.

Short running jobs cannot be profiled with z/XPF

z/XPF should not be used to profile jobs that run in only a matter of seconds, as data capture
initialization may not complete before the job completes.
Here is an explanation:

z/XPF needs to scan the target application control blocks to identify JOBLIB and/or STEPLIB
dataset information. The datasets concatenated to these DD statements are used to map
load modules identified during data capture to allow reporting at the csect level.

The IEFUSI SMF exit installed during server initialization is used to communicate to the
z/XPF server address space that a job on the start-by-jobname queue is starting. It is possible
for the z/XPF server be in the midst of initialization while the target application has already
ceased execution.

To allow for the possibility that the target application has not been given control yet (perhaps
because z/OS still needs to finish initialization before it can run), z/XPF doesn’t even
look for the JOBLIB/STEPLIB information until after the 200th interval. If z/XPF’s default
interval rate is taken by the customer (via the control statement, “NBR_COPYCYCLES_
PER_SECOND=nnn), this means the server won’t even look for that information until after a
minimum of 4 seconds.

zXPF and prior version compatibility

Over time, z/XPF’s internal structures have evolved considerably, and will continue to do so.
Therefore it is possible that new versions of the product will no longer process data captured
under older versions of z/XPF.

It is unlikely that customers will ever “archive” data capture datasets except in certain
circumstances, so we feel the exposure is minimal. However, over the long term logic will be
added so that z/XPF can react and adjust in its processing of data captured under previous
versions of the product.

Of course, it is possible to retain older versions of the z/XPF product in “inventory”, and these

16 | z/XPF Installation Guide

older versions could be used to work on older data capture datasets. For the present, this is
an acceptable work-around for the problem.

z/XPF and virtual storage
z/XPF pre-allocates virtual storage at initialization time in order to greatly increase its efficiency
during execution. In environments where virtual storage is constrained, z/XPF may fail to
initialize, or experience problems during operation. Be advised that systems personnel may
need to relax virtual storage limitations in order to receive the full benefit of z/XPF’s abilities.

Note: For z/XPF Release V1R1 and above, z/XPF utilizes 64-bit storage (above-the-bar)
for data collection and processing. Therefore it is recommended that the installing
Systems Programmer set the MEMLIMIT value in the SMFPRMxx member to NOLIMIT.

Setting the default service class designation for z/XPF
z/XPF needs a certain level of execution “priority” in order to gather data efficiently. Therefore,
it’s a very good idea to set the proper service class designation so that Workload Manager
assigns enough execution time to z/XPF. Otherwise data capture datasets will be incomplete,
and the resulting reports will not be accurate or may even fail.

The default z/OS service classes for started tasks have these definitions: “SYSTEM”,
“SYSSTC”, and “STCLOM”. “SYSTEM” gets the most service, “SYSSTC” gets less service
than “SYSTEM” and “STCLOM” gets the least service.

z/XPF’s default service class is SYSSTC (provided that the installation does not prevent
program-generated Operator commands). If necessary, an Operator command can be issued
to reset the service class for the z/XPF server task after z/XPF initializes. This command is:

E ZXPFCPTR,SRVCLASS=XXXXXX

This Operator command will put z/XPF into the service class defined as “XXXXXX”, whatever
that value is for the local installation.

z/XPF’s service class can also be influenced by an input control statement in z/XPF’s startup
“deck”. That statement is:

RESET_SRVCLASS=XXXXXX

If this statement is present, then z/XPF’s initialization logic will execute the RESET command
to set the server task to the service class “XXXXXX”.

Again, z/XPF’s reports are only as good as the data it can capture. Setting too low a service
class will result in z/XPF not being dispatched often enough to gather the data users need in
order to use the product effectively.

 Duke Software | 17

z/XPF’s Started Task Name
The name of the member in the procedure library may be changed by the user. The default
is ZXPFCPTR.

z/XPF Server logs its actions in ZXPFLOG:
In operation, z/XPF keeps track of its actions in the ZXPFLOG dataset. The dataset is
allocated as a JES SYSOUT dataset. The DD statement used is ZXPFLOG. You can use
this log to verify what’s going on. If you experience unusual results or problems, then please
retain the ZXPFLOG dataset for transmission to us for problem determination. You can find
it in the started task JCL for z/XPF.

z/XPF and LPA mapping functions
During z/XPF’s initialization process it creates Binder maps for modules that are located in
the Link Pack Area (the “LPA”). This process can take several minutes and can consume a
large amount of CPU. Most z/XPF customers want z/XPF to be able to reference modules in
the LPA, but if your installation does not want to allow this as a default action for z/XPF, then
please include a MAPLPA=NO control card in your z/XPF startup deck.

z/XPF and Operator commands
Installing systems programmers may need to interact with system security personnel in order
to secure the authorization for z/XPF to issue three Operator commands that it needs in order
to do its job.

In order to set the correct service class for z/XPF, it issues:

RESET <server-name>, SRVCLASS=SYSSTC

In order to minimize “wrapping” of the system trace tables, z/XPF issues:

TRACE ST,nM

“nnnK” refers to the size of a trace table in Kilobytes. “nM” refers to the size of a trace table
in megaybtes.

z/XPF can also be configured to issue SLIP SET and SLIP DELETE Operator commands at
the user’s request. When SLIP is set by z/XPF, Instruction Fetch or Branch Trace information
is recorded in the capture dataset. This is a very good way for z/XPF users to “drill down” to
the lowest level in their analyses, and we recommend that this ability be granted to z/XPF’s
users.

18 | z/XPF Installation Guide

If the installation decides to grant SLIP usage to z/XPF users, then security policies may
need to be reviewed and/or altered so that z/XPF users may issue the appropriate Operator
commands detailed below.

When the SLIP command is processed on z/XPF’s behalf, the command is “fire and forget”
from z/XPF’s point of view, and no check is made to see if the command was executed
successfully. If a z/XPF user does not obtain the results he or she expected when the
attempt to use SLIP was made, the installation’s security policy may be the “culprit”.

z/XPF also has two optional control card statements that affect its SLIP processing:

SLIP_COMMANDS=YES/NO (If the card isn’t present, the default is “no”)
and
SLIP_ID=xxxx (where “xxxx” is the subsystem name. The default value is “ZXPF”)

For complete information on these control statements, please read the section entitled,
“z/XPF’s Control Statement Explained” below.

Format of the SLIP commands that z/XPF may issue
To turn PER on for instruction fetch:

SLIP SET,I,RANGE=(low-addr,high-addr),ACTION=STRACE,JOBNAME=jobname,ASID
=yyyy,PRCNTLIM=99,ID=xxxx,END

To turn on PER for successful branch trace:

SLIP SET,SBT,RANGE=(low-addr,high-addr),ACTION=STRACE,JOBNAME=jobname,
ASID=yyyy,PRCNTLIM=99,ID=xxxx,END

Explanation of the variables used in the SLIP commands above:

low-addr and high-addr are virtual storage values that z/XPF “plugs in” automatically.
These values are computed based upon the CDE information for the loaded module, and the
information specified by the user in z/XPF’s ISPF panels about which csect and offset within
the desired load module the user wishes to monitor.

=jobname is the name of the targeted address space.

yyyy is the ASID value of the target address space.

xxxx is the SLIP ID. If the SLIP_ID control card is not invoked for this instance of z/XPF, then
the default is “ZXPF”. Otherwise the value in the SLIP_ID control card is used.

 Duke Software | 19

A third, and final SLIP command is issued by z/XPF to turn off PER. It is:

SLIP DEL,ID=xxxx

In this command “xxxx” will match the “ID=” field on the SLIP SET command.

Caution: z/XPF’s SLIP processing can be costly in CPU cycles, and so the decision to use
SLIP processing under z/XPF should be considered wisely. However, this facility can be
VERY useful in certain situations where “high-definition profiling” is desired. There is no
better way to drill down to such a granular level of detail.

Again, we recommend that z/XPF’s users be granted the authority to use z/XPF’s SLIP
Facility. We also recommend that this feature be used with caution and due understanding
of the costs of such CPU-intensive activity.

Finishing the z/XPF installation
1. The z/XPF load library used for the started task must be authorized. Either add the
 target load library to the authorized list, or copy these modules to an authorized
 library:

• APGETSQL
• APLOGT
• APMAPP
• APMERGE
• APMRGECT
• APMVTTE
• APNTVCT
• APPBUFCP
• APPBUFCT
• APRESMGR
• APTBUFCP
• APTBUFCT
• APVSAM
• MERGCHNS
• PBUFCOPY
• TBFZOS10

2. Copy member ZXPFCPTR from the &HLQ.INSTALL.JCL library to a PROCLIB on
 your z/OS system.
3. Modify the STEPLIB DD to point to the load library where the z/XPF modules are
 located.

 NOTE: z/XPF must run as a started task, not as a batch job

4 Create the file that will hold z/XPF’s control statements.

20 | z/XPF Installation Guide

 a.
 b.

 c.

 d.

Create a sequential, fixed-block 80-byte file or a member of a PDS.
Syntax rules: Control statements must begin in column one, with each
different statement type on a separate line.
While you may choose to include any of the control statements included
below (in “Input Statements for z/XPF’s Started Task”), you MUST
include the License Code statement. It must NOT be omitted.
To input the License Code Statement, enter the characters “LC=”, then

 paste the activation code that you got from Duke Software.
The string (beginning with “LC=”) MUST appear in column one of the line.

5. Close the file.
6. Copy member ZXPFCLIST from the &HLQ.INSTALL.JCL library to a valid CLIST
 library.
7. Modify the value in the PRM variable to the sub-system name intended for use by
 this version of z/XPF.
8. Modify the LLIB, PLIB, and MLIB statements to point to the target libraries.

Input statements for z/XPF’s started task
When z/XPF’s server address space is started, z/XPF looks for the INPUT DD statement. The
DD statement points to a file that contains control statements for z/XPF’s current instance.

Note that it is possible to run multiple instances of z/XPF. In the unlikely event that this
becomes desirable, the SSNAME statement must be used, and each SSNAME statement’s
contents must be uniquely named and different from other instances of z/XPF.

z/XPF control statements explained

LC=xxxx-xxxx-xxxx-xxxx

Where the parameter “xxxx-xxxx-xxxx-xxxx” is a 20-character activation code supplied
by Duke Software. This control statement is mandatory. z/XPF will not initialize
without it.

When a new trial of z/XPF is requested, a start and end date is negotiated by management
at the installing customer site. When z/XPF has been installed and if the current date is
before the formal start date of the trial, z/XPF will run, but with a limitation on the number of
events it will capture for any data capture job. This is so the installing Systems Programmer
can verity z/XPF’s proper installation. When the formal start date arrives, then z/XPF will
run without restriction.

That’s the most important control statement, so we put it first. The rest appear in alphabetic
order.

 Duke Software | 21

ALOCVOL=xxxxxx

Use this control statement to place profile data capture datasets on a specific volume.
With this statement set, the dynamic allocation routine constructs the parameter list
requesting the allocation on this volume.

There is no default value. When specified, the parameter “xxxxxx” is any valid DASD
VOLSER within the installation.

If this control statement is not present, then the storage request will be satisfied using
whatever storage management rules are already in place.

ALOCUNIT=xxxxxxxx

If not present, ALOCUNIT defaults to the installation’s default unit type. If stated, this
control statement will direct allocation of data capture datasets to a specific unit or generic
unit type. ALOCUNIT accepts a 1 to 8-character string. No validity checking is done on
this character string.

DATA_CAPTURE_DSN_HLQ=xxxxxxxx

“xxxxxxxx” specifies a one- to eight-character string to be used as the high level qualifier
on profile data capture datasets allocated by the started task. Any characters that are
valid for a dataset name may be used.

If this control statement is not present, then the high level qualifier defaults to the sub-
system name. At present, z/XPF will accept a maximum of eight characters for this value.
We will expand this limitation in future releases of z/XPF.

If the character string of “USERID” is entered as the parameter for this statement, then the
started task will allocate the capture dataset using the TSO USERID of the individual that
scheduled the profile capture request. If this choice is made, then the user must ensure
that the z/XPF started task has the authority to allocate and open for output datasets with
those userids.

To reduce administrative overhead, set this value, and then give individual users authority
to the datasets created by their profile capture requests.

DATA_CAPTURE_DS_BUFFERS=nnn

This Control Statement establishes the number of buffers z/XPF uses during data capture.
If this control statement is not present, the default value is “15”. The higher the value, the

22 | z/XPF Installation Guide

more virtual storage is used to hold the buffers, but the number of I/Os executed to write
to this dataset is reduced. The use of this control statement is highly recommended.

If specified, the parameter “nnn” is a numeric value valid for the BUFND setting for an
ACB. The specified value is used with the profile data capture dataset. The block-size for
this dataset is 4K.

DB2=XXXX,SDSNLOAD=YYYYY.ZZZZZZZ

This control statement is highly desirable for measuring DB2-related programs. XXXX is
a version identifier for a version of DB2 (The version identifier used to be a three character
value. For DB2 Release 10 and above, it is a four-character value). YYYY.ZZZZZZ is the
dataset name for that version’s SDSNLOAD Library. Below is an example of this control
statement for DB2 Version 8.1:

DB2=810, SDSNLOAD=DSN810.SDSNLOAD

The presence or absence of this control statement indicates to z/XPF that DB2 catalog
information for DBRMs, Packages, and Plans should be acquired and added to the data
capture dataset. z/XPF will then use the Call Attach Facility to connect to the target DB2
system identified during data capture.

For each version of DB2 present on the target system one statement is needed. Multiple
DB2 systems at the same version level can share the same SDSNLOAD dataset.

For DBRMs bound into packages, DB2 catalog tables SYSIBM.SYSPACKAGE and
SYSIBM.SYSPACKDEP are queried for bind and dependency information, and SYSIBM.
SYSPACKSTMT is queried for SQL text. In order for z/XPF to access these catalog
tables, the DBRM shipped with z/XPF must be bound on the target DB2 system. Also,
z/XPF must be allowed to access the DBRM via installation security systems.

When a query of SYSIBM.SYSPACKAGE returns a “not found” condition for a DBRM,
catalog tables SYSIBM.SYSPLAN, SYSIBM.SYSPLANDEP, and SYSIBM.SYSSTMT are
accessed.

FORCE_VENDOR_TABLE=YES

This control statement will store z/XPF’s common area data block in the vendor table
anchor entry assigned by IBM for use by z/XPF. It is only to be used in circumstances
wherein (for some reason) z/XPF’s vendor table anchor slot has become corrupted
(meaning the slot contained non-zero values but also did not contain z/XPF’s data area).

 Duke Software | 23

INTERVAL_TOLERANCE_PERCENTAGE=nn

The parameter “nn” is a percentage value. The default value is 10 percent.

In a heavily loaded environment it is important to verify that z/XPF is capturing ALL the
data available, without lapses. The INTERVAL_TOLERANCE_PERCENTAGE is used to
compute whether z/XPF is getting control often enough.

The “Interval Rate” is the number of times per second that z/XPF gets control of the
processor to scan trace records. The Interval Tolerance Value of “nn” is used as a
percentage to calculate whether the achieved interval rate is within range of a “desired”
interval rate.

[For example, on our development system, we may expect to get fifty “intervals” per
second, and at the end of ten seconds, we’d expect to see a total of 500 intervals.
However, we may not be able to achieve exactly that number of intervals, so a ten percent
“tolerance” value would be used. If the Interval Rate fell below 450 in ten seconds (90%
of the “desired” Interval Rate) z/XPF would begin to generate messages.]

Put in other words, if the achieved Interval Rate is greater than the desired Interval Rate
minus the tolerance value then all is well.

After the first ten seconds of execution, z/XPF compares the achieved Interval Rate with
the actual Interval Rate and computes it against the Interval Tolerance percentage. If all
is well, z/XPF checks again twenty seconds later. If all is still well, z/XPF checks again
thirty seconds later. If an exception is seen, z/XPF will generate messages to the session
log and the 10-20-30-second monitor cycle will begin again.

MAP_LMOD_DURING_CAPTURE=YES/NO

z/XPF normally performs mapping functions DURING data capture. This causes the
z/XPF server address space to allocate and open datasets that reside in Joblib/Steplib
and Linklist as input to the Binder. This may cause a security problem for the z/XPF
Server Address space. If so, you can turn off this behavior by adding the above Control
Statement with a parameter of “NO” to turn mapping off during data capture. Mapping
can then be done later, during the report generation phase.

If this control statement is not present, then the default value of the parameter is “YES”.

24 | z/XPF Installation Guide

MAPLPA=NO

By default, z/XPF will attempt to map modules in the Link Pack Area (LPA) in order to create
BInder Maps. Depending on the number of modules in the LPA, this process can take several
minutes and consume a large amount of the CPU. This defaul action can be over-ridden by
includeing the MAPLPA=NO control statement in z/XPF’s startup deck.

MAP_LPAMOD=xxxxxxxx,DSN=yyyyy

Use this control statement to inform z/XPF of the location of LPA resident Load Modules that
are not mapped during z/XPF’s normal initialization. z/XPF will thereafter use this information
when calling the Binder to create Csect maps for the named Load Module.

In this control statement, xxxxxxxx should contain the Load Module name, and yyyy the
dataset name to be used for the Binder dialogue.

You may define no more than 100 MAP_LPAMOD statements to z/XPF.

z/XPF’s initialization logic uses the LPAT table, mapped by Dsect IHALPAT as the source for
the calls to the Binder. When the mapping logic has processed the last dataset in the LPAT,
and there are LPA resident modules not yet mapped, message XPF000E-03 is written to the
ZXPFLOG for each Load Module not yet mapped. These modules could be “candidates” for
this special mapping function. If you wish to have z/XPF map these modules, add a MAP_
LPAMOD control statement for each module.

MAX_MSG_DURING_CAPTURE=1000/NNNNNN

This parameter sets an upper limit on the number of messages generated by z/XPF’s
server address space. It prevents z/XPF’s data capture from writing redundant messages
to the z/XPF log. If this number is exceeded, then z/XPF may be in a loop, and all active
data capture sessions are stopped.

If this control statement is not present, the default value of the parameter is “1000”. This
can be set to any value desired up to 999999. It may be overridden by keying in all zeros,
thusly: “000000” In that situation, there will be no limit on the number of messages
logged.

NBR_COPYCYCLES_PER_SECOND=50/nnn

 Duke Software | 25

The parameter “nnn” is used to compute the target for the number of times per second
z/XPF will scan for events. At the beginning of each interval, z/XPF notes the time the
interval started. When all of the interval processing is completed, the start time for the
next interval is computed, and the current time is subtracted from the next interval start
time, to give the pause time.

If this control statement is not present, the defaults value is “50”. If specified, “nnn” is any
value between 1 and 100.

If events occur that z/XPF doesn’t seem to capture, then it is possible that this parameter
has been set to a value that is too low.

PR_BUFFERS=nnn

In order to minimize “wrapping” of system Trace Buffers (and subsequent data loss by
z/XPF), z/XPF can adjust the number of processor Trace Buffers by executing the “TRACE
ST” Operator command during z/XPF’s initialization. The larger the Trace Buffers, the
greater the chance that z/XPF will be able to keep up with execution in very fast-throughput
environments.

z/XPF will enter the commands thusly: “TRACE ST,nM”

For z/OS V1R10 and above, the system default is 256 4K buffers for a trace table of 1
megabyte. In these systems, z/XPF will set the processor trace table to 512 buffers per
processor, for a trace table of 2 megabytes. The maximum value z/XPF will accept on
this statement is 1280, or 5 megabytes per processor. Any value greater than that will be
set to 1280. Any value less than 256 will be set to 256. Any value entered in the control
statement that is less than the currently set amount will be ignored.

PR_BUFFERS=ASIS

If this statement is present, z/XPF will not adjust the trace table size. Be advised that this
may prevent z/XPF from capturing all of the trace records it needs in order to do its job.

RACF_PROFILE=”hlq”

If specified, the parameter “hlq” is the High Level Qualifier for a set of RACF security
profiles. If unspecified, the value is a default of “ZXPF”.

Later, during initialization, a RACROUTE is executed to create a list inside the z/XPF
address space of the profiles that are relevant to z/XPF.

When a request is to be added to one of the queues, a RACROUTE authorization check is

26 | z/XPF Installation Guide

made. The entity used for the check will use the parameter given in the RACF_PROFILE
statement.

Potential issue: As long as a user does not specify a RACF_PROFILE= statement in
any instance of z/XPF, or specifies the same value in all instances, all is well. HOWEVER,
if one instance of z/XPF specifies a RACF_PROFILE statement, and then the installation
starts another instance of z/XPF, but DOES NOT specify the same high level qualifier for
that instance, then that instance of z/XPF will run un-protected.

The easiest course of action is to take the default, or specify the same value in the RACF_
PROFILE= statement on all instances of z/XPF.

RESET_SRVCLASS=XXXXXX

If this statement is used, it will cause z/XPF to issue an Operator RESET command to
set z/XPF’s service class to the named service class. The default value for z/XPF is
“SYSSTC”.

RESTARTDSN=dsname

If specified, the parameter “dsname” is the name of a dataset. This dataset is used to
hold profile requests in the z/XPF started task queues when the z/XPF server terminates.
During start-up it is allocated and read. All requests in the start-by-jobname queue are
restored. Any request in the start-by-time queue that has not expired is restored.

If the RESTARTDSN statement is used, then the parameter “DSNAME” dynamically
allocates a dataset of that name (if it is not already present when the task initiates) as a
physical sequential, fixed block file, with a block-size of 9600. It is a one-track dataset,
with a one-track secondary allocation.

SLIP_COMMANDS=YES/NO

If this control statement is not present, the default value of the parameter is “NO”.

Specify “YES” to allow profile data capture sessions to include SLIP PER interrupts.
z/OS allows only one SLIP of this type to be active at a time.

When an active profile capture session contains a request for SLIP records, z/XPF
compares the identified load modules in the target profile address space to the load
module name in the user’s request. When a match occurs, a SLIP command is created
and sent to z/OS via MGCRE (SVC 34) if z/XPF does not already have a SLIP active at
that time for another profile session.

 Duke Software | 27

When the profile data capture session terminates, z/XPF checks to see if a SLIP was
issued. If it was, it constructs another command to terminate SLIP processing, and
submits that to z/OS again using MGCRE.

SLIP_ID=xxxx

If this control statement is not present, z/XPF will default to using the sub-system name
given in the SSNAME statement. Specify any set of one- to four-characters that are valid
for the ID used in a SLIP command. Note: this ID should be unique among SLIP IDs used
in the installation. That is, pick a SLIP ID that will ONLY be used by z/XPF.

SSNAME=ZXPF/xxxx

The value specified here is used as the z/XPF sub-system name. If this control statement
is not present, the default value is “ZXPF”.

Many instances of z/XPF may run concurrently, but each must be uniquely named. If
specified, the parameter “xxxx” can be any one- to four-character name.

SSCLEAR=YES/NO

If this control statement is not present, the default value for the parameter is “NO”.

Use this statement with caution. If stated, this statement will cause z/XPF to clear the
Subsystem Control Table for a previous instance of z/XPF with the same name as given
in the SSNAME parameter. This is useful in situations where a previous instance of
z/XPF has terminated abnormally.

If there is NOT another z/XPF server address space active using the name specified by
the SSNAME control statement, then setting this to YES cannot do any harm. HOWEVER,
when another z/XPF server address space is active and is using the same SSNAME
parameter, using SSCLEAR=YES will cause errors within the other active server address
space.

USER_TRACE_NBR=0-F

If this control statement is not present, the default value of the parameter is “F”.

This control statement is used in conjunction with the ZXPTRAC “User Trace” feature.
ZXPFTRAC allows you to create your own “Trace Records” that are written to system

28 | z/XPF Installation Guide

Trace Buffers and later reported on by z/XPF. The feature allows you to signal events in
complex code flows,

For example, you could execute a ZXPFTRAC with TYPE=BEGIN into your code prior to
scheduling it to run on a zIIP processor, and then execute a ZXPFTRAC with a TYPE=END
once the code is running on the zIIP processor. In this way, you can measure the amount of
system overhead it takes to get your code ported over to the zIIP processor.

WRITE_TO_LOGREC=YES

This control statement is a diagnostic tool for special circumstances. It is used to force the
writing of log records when trouble-shooting z/XPF’s SRB-based data capture logic. Specify
this control statement only at the direction of z/XPF’s Technical Support personnel.

Installation verification/trouble-shooting
 Duke Software does not supply any installation verification mechanism. Too many variables

 can affect the data capture function for us to be able to supply a canned verification
process. If you have taken care of whatever security concerns/issues there may be in your
environment, and you are confident WLM will treat the z/XPF address space correctly, try starting
the address space. A reminder: z/XPF must execute as a started task, not as a batch job.

If z/XPF doesn’t come up, check the ZXPFLOG SYSOUT dataset for the address space to see
what the error messages indicate.

Once the started task initializes, execute the CLIST you copied to the CLIST library.

Select Option 1 from the z/XPF Primary Option Panel to create a profile data capture request. If
you have a short batch job you can run, enter a request to start a capture session at the same
time as when the batch job becomes active. This is a request that will be added to the start-by-
jobname queue. Try to use a job that you know will execute for at least 15 - 30 seconds, if not
longer. Alternatively, you may start a data capture session for an active address space.

When the capture session terminates (either because the batch job finished, or because you
used the ISPF interface to stop it), check the ZXPFLOG SYSOUT dataset for messages related
to your capture session.

In the ZXPFLOG SYSOUT dataset you should see messages at the start of the capture session
indicating the dataset was allocated, and another message at the end indicating it was de-
allocated. If you encounter an error message instead, contact Duke Software Technical
Support team for help.

 Duke Software | 29

Here’s a handy usage note:

z/XPF creates its profile from the events that are occurring on the z/OS image while the
target profile address space is active. On a very lightly loaded machine, there may not be
enough activity to generate enough events to get an accurate profile, and this situation is
possible on a development system.

To get around this, you can specify that GTF SLIP PER events be created. You can do
this while setting up the data capture request and z/XPF will take care of it, or you can do it
manually by entering the SLIP command from a console.

Thanks again for installing z/XPF. We hope it serves you well. If we can be of any further
assistance to you, please don’t hesitate to contact us.

Once again, you can reach us here:

Dave Day : (281) 395-5570 or David.Day@duke-software.com

mailto:bshimizu@colesoft.com
mailto:dday@colesoft.com

	Welcome to the z/XPF Installation Guide
	System Requirements
	TSO/ISPF considerations
	Contents of the Installation package
	Copying z/XPF files to the mainframe
	NON-SMP/E installation
	SMP/E installation
	After installation (SMP/E or not) you still have to:
	z/XPF and DB2
	z/XPF and Installation Security
	z/XPF’s use of SMF Exits IEFUSI and IEFACTRT
	Short running jobs cannot be profiled with z/XPF
	zXPF and prior version compatibility
	z/XPF and virtual storage
	Setting the default service class designation for z/XPF
	z/XPF’s Started Task Name
	z/XPF Server logs its actions in ZXPFLOG:
	z/XPF and LPA mapping functions
	z/XPF and Operator commands
	Format of the SLIP commands that z/XPF may issue
	Finishing the z/XPF installation
	Input statements for z/XPF’s started task
	z/XPF control statements explained
	LC=xxxx-xxxx-xxxx-xxxx
	ALOCVOL=xxxxxx
	ALOCUNIT=xxxxxxxx
	DATA_CAPTURE_DSN_HLQ=xxxxxxxx
	DATA_CAPTURE_DS_BUFFERS=nnn
	DB2=XXXX,SDSNLOAD=YYYYY.ZZZZZZZ
	FORCE_VENDOR_TABLE=YES
	INTERVAL_TOLERANCE_PERCENTAGE=nn
	MAP_LMOD_DURING_CAPTURE=YES/NO
	MAPLPA=NO
	MAP_LPAMOD=xxxxxxxx,DSN=yyyyy
	MAX_MSG_DURING_CAPTURE=1000/NNNNNN
	NBR_COPYCYCLES_PER_SECOND=50/nnn
	PR_BUFFERS=nnn
	PR_BUFFERS=ASIS
	RACF_PROFILE=”hlq”
	RESET_SRVCLASS=XXXXXX
	RESTARTDSN=dsname
	SLIP_COMMANDS=YES/NO
	SLIP_ID=xxxx
	SSNAME=ZXPF/xxxx
	SSCLEAR=YES/NO
	USER_TRACE_NBR=0-F
	WRITE_TO_LOGREC=YES

	Installation verification/trouble-shooting
	Here’s a handy usage note:

